Understanding the Potential for Video Analytics to Support Traffic Management Functions

ENTERPRISE Program

Program Goals

- Facilitate rapid progress in the development and deployment of ITS technologies
- Accelerate the systematic advancement of selected ITS projects

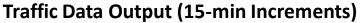
Members carry out ITS projects and activities including fundamental research, technology development, demonstration, standardization, and deployment.

ENTERPRISE Program

Members

- Arizona DOT
- Georgia DOT
- Idaho Transportation
 Department
- Illinois DOT
- Iowa DOT
- Kansas DOT
- Maricopa County, AZ
- Michigan DOT
- Minnesota DOT

- Mississippi DOT
- Oklahoma DOT
- Pennsylvania DOT
- Texas DOT
- Washington State DOT
- Ontario Ministry of Transportation
- Transport Canada
- Dutch Ministry of Transport
- FHWA



What is Video Analytics?

Video Analytics systems *process video streams* from traffic cameras to:

- Collect Traffic Data: Vehicle counts, speeds, vehicle classifications
- Detect Incidents and Create Alerts: Stopped vehicles, slow traffic, wrong-way vehicles, wildlife, pedestrians, debris

DATE	TIME	VOL(NS)	SPEED(NS)
2013/06/13	12:00 AM	161	71
2013/06/13	12:00 AM	130	68
2013/06/13	12:15 AM	121	70
2013/06/13	12:30 AM	112	69
2013/06/13	12:45 AM	83	70
2013/06/13	1:00 AM	54	67
2013/06/13	1:15 AM	59	68
2013/06/13	1:30 AM	84	68
2013/06/13	1:45 AM	48	65
2013/06/13	2:00 AM	74	71
2013/06/13	2:15 AM	60	66
2013/06/13	2:30 AM	65	68
2013/06/13	2:45 AM	56	68

Why Use Video Analytics?

Challenges

- Difficult to monitor conditions in rural areas
- Challenge for TMC operators to monitor multiple camera views simultaneously
- Vehicles traveling the wrong way introduce safety hazard

Opportunities

- Utilize existing camera infrastructure
- Potential to use Video Analytics for multiple purposes (traffic data collection, incident detection)

Why Evaluate Video Analytics?

Project Goals

- Investigated potential of Video Analytics as a tool for:
 - Traffic data collection
 - Incident detection
 - Wrong-way vehicle detection
- "Proof of Concept" evaluation to understand current state of practice
 - How accurate? How effective? How useful?
 - Compared to traditional methods/technologies: Loop detectors, radar, reported incidents, visual observation
- Not a comparison of vendors' products

"Virtual Test Bed" Deployment Sites

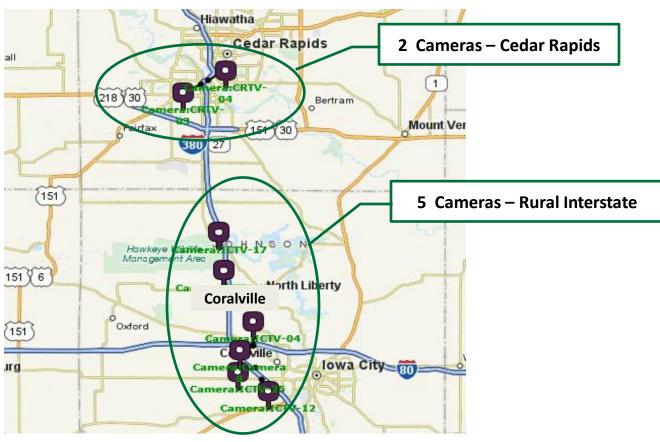
Deployment Conditions

Tested in "Real World" Conditions

- Existing camera infrastructure
- Typical TMC practices and workflow

Conditions Not Controlled to Ensure Optimum Performance

- Camera settings & system configurations not always ideal for video processing (doing this could affect viewing ability)
- Normal panning/zooming of cameras
- TMC operations did not allow for constant monitoring and re-configuring of Video Analytics. Efforts made to adjust systems as much as practical.


INCIDENT DETECTION

Cedar Rapids - Rural Deployment

7 cameras instrumented - 2 vendors

Des Moines Deployment – Urban / Suburban

15 cameras instrumented – 1 vendor

(Approx. 12% of Des Moines freeway network "coverage" with Video Analytics)

Variation in Camera Views (examples)

Incident Types Detected by Video Analytics

- Stopped Vehicle / Debris in Road
- Slow Traffic / Congestion
- Pedestrian
- Wrong-Way Vehicle

Analysis Approach:

- 1) Reviewed Detection Alerts: Still Images / Video Clips
- 2) Classified Alerts:
 - Likely Detection (validated)
 - Detection Not Likely (not validated)
 - Unable to Determine
- 3) Calculated % validated, % not validated, % unable to determine (as a function of total number of alerts)
- Highest level of performance reported

Examples - Incident detection validated

Stopped Vehicle

Examples - Incident detection validated

Stopped Vehicle

Examples - Incident detection validated

Slow Traffic / Congestion

Example - Incident detection validated

Pedestrian detected as "Stopped Vehicle"

Examples - Incidents not validated (false alarms)

Examples – Incidents not validated (False Alarms caused by Obstructions in View)

Examples - Unable to determine

2013/11/21 10:34:37

Results:

Highest Level of Performance

Stopped Vehicle / Debris:

72% alerts validated, 23% not validated, 5% unable to determine (81 alerts during a 44-day period)

Stopped Vehicle / Debris – Remove False alarms from Object in View:

0% "false alarms" (26 alerts during a 21-day period)

Slow Vehicle/Congestion:

30% alerts validated, 33% not validated, 37% unable to determine (1111 alerts during a 44-day period)

Pedestrian in Road:

None observed

Wrong-Way Vehicle Movements:

None observed

Results

Factors that Impacted Performance

- Objects in the field of view
- Weather events / moisture on camera lens
- Headlight glare on roadway during nighttime lighting conditions

Factors that Did Not Appear to Impact Performance

- Camera position (zoom level, angle to roadway)
- Inaccurate configuration of Video Analytics to roadway lanes (e.g. camera panning)

Comparison of Detection Alerts to Agency Reported Incidents

- It is likely that Video Analytics detected a number of incidents that were not observed by agency staff, indicating that Video Analytics can be an effective tool for supplementing existing mechanisms to alert operators
- Strategic selection of camera locations along a coverage area will optimize usefulness of Video Analytics

TRAFFIC DATA COLLECTION: lowa/Kansas City Deployments

Traffic Data Types:

- Volumes (Vehicle Counts)
- Average Speeds
- Vehicle Classifications

Classification Categories from Video Analytics	Corresponding FHWA Classifications	
Motorcycles	Classifications 1	
Cars	Classifications 2-3	
Small Trucks	Classifications 4-7	
Large Trucks	Classifications 8-13	

Analysis Approach

- Data collected in 15-minute increments
- Video analytics outputs compared to outputs from DOT detectors (loops and radar)
- Absolute Percent Difference (Abs % Diff) Calculation:
 - Calculate 15 min. period difference from DOT data
 - Convert it to absolute difference (remove any '-')
 - Compute Percent Difference
 - Result is Abs % Diff.
- Caveat: Night-time traffic is often very low volumes. Abs
 % Diff. is not as meaningful

Results: Highest Level of Performance

(All results shown are average % Diff for one week)

Traffic Volumes:

- <u>Day</u>: 9% Avg. % Diff. (carries reasonable expectation of repeatability)
- Night: 17% Avg. % Diff. (*Does not* carry reasonable expectation of repeatability)

Vehicle Speeds:

- <u>Day</u>: 2% Avg. % Diff (carries reasonable expectation of repeatability)
- <u>Night</u>: 6% Avg. % Diff (carries reasonable expectation of repeatability)

Vehicle Classifications:

- "Motorcycles" (FHWA Classification 1): Avg. % Diff of 24% at night
- "Cars" (FHWA Classifications 2-3): Avg. % Diff of 13% daytime
- "Small Trucks" (FHWA Classifications 4-7): Avg. % Diff of 44% daytime
- "Large Trucks" (FHWA Classifications 8-13): Avg. % Diff. of 23% daytime

<u>Results</u>

Factors that Impacted Performance

- Low light / dark conditions
- Camera position (proximity to traffic, zoomed out, angled to roadway)
- Weather events that reduce image quality
- Inaccurate configuration of video analytics to roadway lanes
- Camera settings (e.g. shutter speed, max gain)

Factors that Did Not Appear to Impact Performance

 Position of camera relative to direction of traffic (e.g. counting headlights vs. tail lights at night)

TRAFFIC DATA COLLECTION: Ontario Ministry of Transportation (MTO) Deployment

MTO Deployment – Focus on Volumes

- 13 cameras instrumented at 4 Locations
- Data collected in 15-minute periods
- Video recorded for 1 week at each camera, sent to video analytics vendor for processing
- Manual counts conducted for comparison
- Manual counts compared to video analytics data outputs to compute percent error

Results:

Type of Comparison	Configuration/ Setting	% Error
Time of Day	Day ¹	9.1%
	Night	7.9%
Camera Angle	Side	9.4%
	Overhead	6.5%
Camera Type	Axis	7.5%
	Cohu	9.6%

¹ 'Day' analysis was PM peak (16:30-17:30)

Results:

- 1. Camera based counting system is appropriate if:
 - Overall Accuracy within 10% is acceptable
 - Vehicle Classification is not critical
- 2. Camera based counting system may not be suitable if:
 - Counts are to be conducted in work zones or areas with high stop-and-go traffic
 - Accuracy within 5% is required
 - Vehicle Classification is needed
 - Night-time accuracy is important

Lessons Learned:

- 1. Engage in discussions early with camera vendors
- 2. Standard definition cameras are actually better
- 3. Ambient light surrounding cameras should be taken into consideration for camera locations

Next Steps:

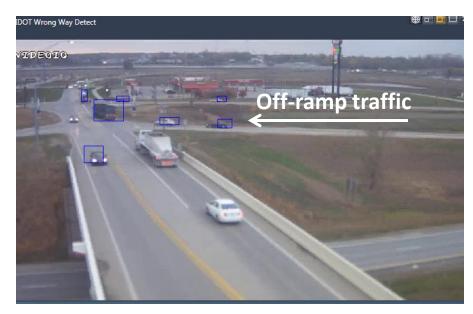
MTO will be undertaking additional data collection assignments utilizing video analytics beginning this fall and continuing through next summer

WRONG-WAY VEHICLE DETECTION

Wrong-Way Vehicle Detection

Controlled Test: Nov. 2013 in Ames, IA

- 3 vendors/technologies at 3 separate freeway ramps
- Ramp closures to test various conditions
- Detections conveyed via email, web interface, or onsite computer interface
- Recorded "detection" or "non-detection"



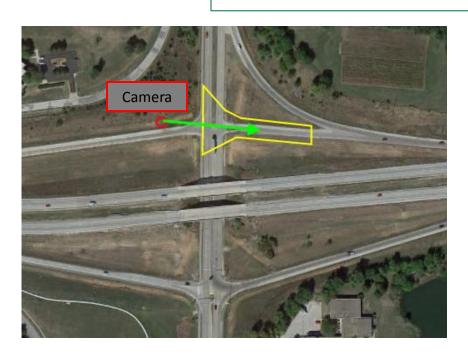
Wrong-Way Vehicle Detection

Deployment Site #1 US 30 at Dayton Ave.

90 degree detection

Wrong-Way Vehicle Detection

Deployment Site #2 US 30 at Duff Ave.


90 degree detection

Wrong-Way Vehicle Detection

Deployment Site #3 US 30 at University Blvd.

"head-on" detection

Wrong-Way Vehicle Detection

Highest Level of Performance Achieved

Daytime Test: 100% detection for 12 test drives

Nighttime Test: 83% detection for 12 test drives

Factors that Impacted Detection Rate

Nighttime / Low Light Conditions
Slow Speeds

Factors that Did Not Appear to Impact Detection Rate

Color/Size of Vehicle

Lane Position (consistent position, shoulder, and/or weaving)

LESSONS LEARNED

Planning and Procurement

1. Determine Uses and Needs

- What will the system be used for?
- What are the most important uses (e.g. traffic data collection, incident detection, etc.)?

2. Understand Limitations of Multi-Purpose Capabilities

- Camera positions / settings may serve one application better than others
- Multiple uses may be difficult or impractical

Planning and Procurement, cont'd

3. Recognize Investment Tradeoffs

- Potentially lower up-front investment with Video Analytics
- Consider continuing costs: Staff training, setup, and ongoing monitoring/configuration

4. Utilize Fixed Cameras and/or Dedicated Cameras for Traffic Data

- Traffic data tends to be more accurate with cameras that remain stationary (fixed, dedicated)
- Consider installing temporary dedicated cameras where infrastructure does not allow optimized positioning

Planning and Procurement, cont'd

5. Optimize Video Feed Quality and Communications

- Video feeds with minimal interruption are desired.
 "Choppy" feeds/communications will not be accurately processed.
- Ask vendors to provide feedback on feed quality
- Test video feeds in advance of procurement

6. Include Design & Testing Provisions in Procurement

 Add tasks for additional testing and tuning 6 months to 1 year after initial deployment

Planning and Procurement, cont'd

- 7. Make 'Go/No-Go' Decisions When Selecting Cameras
 - Work with vendors to determine if camera positions are suitable
- 8. Consider Future Potential for Video Analytics when Installing New Cameras
 - Even if Video Analytics deployments are not planned, consider potential for future use when installing new camera infrastructure

Deployment

1. Dedicate Agency Resources to Deployment Activities

- Agency resources needed during installation and troubleshooting during set-up
- Schedule check-in visits with vendors

2. Commit to Learning & Understanding System Procedures

- Dedicate resources to learning system configurations, procedures, and performance impacts
- Operators should fully understand capabilities to ensure that the system is as useful and accurate as possible

System Operation

1. Use Camera Presets and Auto-Return to Preset Positions

 Cameras should reset to optimal Video Analytics positions after being manually moved

2. Monitor Calibrations and Adjust as Needed

 Operators should ensure that cameras are returned to their optimal view settings (use presets, if possible)

3. Recognize Strong Link Between Human Interaction & System Performance

- Success is dependent on agency's level of commitment
- Resources needed to monitor performance, adjust and reconfigure when cameras pan/zoom, etc.

Evaluation

1. Establish Performance Parameters

 Develop subjective "success" parameters to determine if a system performs to pre-determined standards

2. Compare/Contrast Video Analytics to Other Detection Mechanisms

Compare performance outcomes of various technologies for specific uses

3. Extend Incident Detection Testing to "Missed Incidents"

- Determine extent to which Video Analytics fails to detect actual incidents
- Utilize closed test track or other controlled environment

EVALUATION FINDINGS

Evaluation Findings

State of Practice for Video Analytics is ready to meet many agency needs.

- Dedicated and/or fixed cameras may be warranted, especially for traffic data collection
- Video Analytics may not serve all purposes simultaneously (e.g. a camera used for incident detection may not be optimal for traffic data collection)
- Important to follow vendor guidelines for camera selection, position, zoom level, etc.
- Recognize significant human component involved. Operator resources are required to monitor system settings and re-configure as needed.

Acknowledgements & Project Contact

Final Report:

Published at <u>www.enterprise.prog.org</u>

Participating Agencies

- Iowa DOT
- KC Scout/Missouri DOT
- Ministry of Transportation of Ontario

Participating Vendors

- DRS Technologies, Inc.
- Iteris, Inc.
- Peek Traffic Corporation
- TrafficVision
- VideoIQ

Contact Information:

Mike Barnet
Ontario Ministry of Transportation
mike.barnet@ontario.ca

